超低表面粗さで散乱を最小化

 

サブオングストロームの表面粗さをもつスーパーポリッシュ加工の光学部品は精密なレーザーオプティクスアプリケーションに最適

 

極度に低損失なオプティクスの製作を補完するイオンビームスパッタリング (IBS) コーティング

 

温度、pH値、スラリー投入量など、研磨パラメーターの高度な制御が不可欠

 

サブオングストロームの測定値が機器のノイズレベルに近づくため、計測が極めて重要

レーザーシステムにおけるスループットの向上や損失低減に向けた継続的かつ揺るぎない進歩は、とりわけ高出力レーザーや短波長を使用する場合において散乱を最小限に抑える光学部品を要求しています。超低表面粗さによってこの要求を満たすオプティクスを 「スーパーポリッシュ」 と表現されることもあります。どの面粗さのオプティクスをスーパーポリッシュと見なすかの業界標準はありませんが、エドモンド・オプティクスは、ppmレベルの散乱に対して光学面を1オングストローム (10-10 m) RMS未満の面粗さにまで研磨する加工法を開発しました。スーパーポリッシュされたオプティクスは、ガス分析用のキャビティリングダウンシステム、レーザージャイロスコープ、および欠陥の少ないオプティクスを必要とするその他のシステムなど、高感度レーザーアプリケーションに最適です。この高度に制御された表面は、イオンビームスパッタリング (IBS) などの低損失コーティング技術を補完します。

サブオングストロームの面粗さをどう測定するか?

すべての計測デバイスには、測定可能な固有の空間周波数 (Spatial Frequency) 範囲があります。Figure 1は、表面粗さの測定によく用いられる3つの測定技法で重複する空間周波数範囲を表しています。3つの技法とは、従来型の光学干渉法、白色光干渉法 (White Light Interferometry; WLI)、および原子間力顕微鏡 (Atomic Force Microscopy; AFM) です。

Figure 1: 一般的な測定デバイスの対応空間周波数には重複する範囲がある1

異なる空間周波数範囲は、異なるタイプの表面誤差に対応します。周波数のこうしたグループは、その境界を明確に定義していないものの、特定周波数範囲をカバーする領域と通常理解されています。従来のHe-Ne レーザーを用いた干渉計は、形状誤差として知られる典型的なゼルニケ多項式に関連した低空間周波数を測定するのに適しています。この方法は、WLIの中空間周波数範囲とわずかに重複しますが、WLIはうねり (waviness) として知られるより細かいレベルの表面誤差を測定するのにより適しています。この範囲では、誤差が散乱と性能低下に影響を及ぼし始めます。WLIとAFMのどちらでも面粗さを測定できますが、重要になる空間周波数グループはそのアプリケーションに依存します。目視および長波長のアプリケーションは、一般に2,000サイクル/mm未満で測定され、この場合はWLIを用いることができます。AFMは、面の一部分をより詳細に確認するのに適しており、UVアプリケーションに必要な高空間周波数を測定するのに必要となります。

空間周波数範囲のより高い機器を使用することは、実視野がより小さくなるというトレードオフを通常もたらします。AFMは、サブオングストロームの表面を直接測定するのに用いることができますが、実視野と感度が小さいため、製造現場での面粗さ測定よりも実験室での使用により適しています。エドモンド・オプティクスは、AFMとWLI間のデータ相関、および後者からのピーク性能を確保する手順を用いて、WLIが製造現場でスーパーポリッシュ面のサブオングストロームのRMS面粗さを計測するための効果的なツールにできることを確証しました。サブオングストロームの面粗さ計測の詳細については、SPIE会議の議事録 でご確認いただけます。2

スーパーポリッシュオプティクスはどのように作られる?

従来の減法的光学研磨は、初期段階の研削および研磨過程によって引き起こされた損傷を除去するために、より細かい研磨剤を漸進的に用いる反復プロセスです。どれほど細かい研磨剤が使用されたとしても、砥粒研磨した場合の表面下損傷は当然の結果です。表面および表面下の損傷箇所は、面粗さやエネルギー吸収を増加させるため、エネルギー散乱の増加とともに、熱の発生やシステム効率の低下を引き起こします。散乱は面粗さの自乗に比例します。

しかしながら、エドモンド・オプティクスで用いられるオプティクスをスーパーポリッシュするためプロセスは、焦点を機械研磨プロセスからスラリー、ガラス、研磨ラッピング間の化学反応に移すことで、表面下損傷を完全に排除します。損傷はベイルビー層で起こるため、機械的作用は、基板から損傷の原因を除去するためにのみ使用されます。石英ガラスに水溶性はありません。ベイルビー層は研磨中に形成される石英層で、水酸化イオンの拡散によって変化し、一旦形成されると基板をさらなる変化から保護するのに役立ちます。3

サブオングストロームの面粗さをもつオプティクスは、スラリーで水和されたラッピングを光学部品と同じ温度に保つ水浸研磨を利用して製作されます。化学反応を促進するために温度とpH値の両方が高度に制御される一方、表面張力が汚染物質に対する障壁を形成します。4 エドモンド・オプティクスの水浸研磨加工に関する詳細は、別のSPIE会議議事録 でご確認いただけます。

エドモンド・オプティクスのスーパーポリッシュオプティクス

エドモンド・オプティクスは、サブオングストロームのスーパーポリッシュ面が、合成石英から作られた平面や球面オプティクスで繰り返し達成可能であることを実証しました。表面には製造工程で残された目に見える損傷がなく、測定可能な表面下損傷もありませんでした (Table 1)

スーパーポリッシュ前の合成石英製オプティクス
  P-V (Å) RMS (Å) Ra (Å)
平均 183.42 7.42 5.70
範囲 2089.92 18.24 11.19
標準偏差 186.88 2.91 1.82
スーパーポリッシュ後の合成石英製オプティクス
  P-V (Å) RMS (Å) Ra (Å)
平均 14.24 0.91 0.77
範囲 2.26 0.03 0.21
標準偏差 1.14 0.02 0.06
Table 1: 水浸研磨がRMS面粗さを >7Åから<1Åに低減することを証明した。詳細は、当社のSPIE会議議事録 を参照。

オンデマンドウェビナー (英語)

Ultra-Low Surface
Roughness Polishing

To learn more about the fabrication and measurement of superpolished optics, watch our 45-minute on-demand webinar

アプリケーションや要件をご相談ください。

スーパーポリッシュ面は、イオンビームスパッタリング (IBS) などの低損失コーティング技術を補完します。それは、このコーティングが巧みに蒸着されれば、性能はそのガラス基板の面粗さによって通常制限されるためです。特注のスーパーポリッシュオプティクスについてご相談ください。なお在庫販売品については以下をご覧ください。

IBS レーザーミラー

  • 低損失かつ高反射率のIBSミラーコーティング
  • 15J/cm2 @ 1064nmまでの保証された高レーザー損傷閾値
  • ppmレベルの散乱性能を持つスーパーポリッシュ基板もラインナップ
TECHSPEC

スーパーポリッシュ レーザーウインドウ基板

  • 両面を 1Å RMS 以下の面粗さでスーパーポリッシュ
  • λ/10の平面度と10-5の表面品質
  • 端面部を研磨加工したUVグレード 合成石英基板
  • 社内製造で6mmから76.2mmまでの特注サイズや形状、および片面だけの研磨も対応可能

参考文献

  1. Leslie L. Deck, Chris Evans, "High performance Fizeau and scanning whitelight interferometers for mid-spatial frequency optical testing of free-form optics," Proc. SPIE 5921, Advances in Metrology for X-Ray and EUV Optics, 59210A (31 August 2005); doi: 10.1117/12.616874
  2. Shawn Iles, Jayson Nelson, "Sub-angstrom surface roughness metrology with the white light interferometer," Proc. SPIE 11175, Optifab 2019, 1117519 (15 November 2019); https://doi.org/10.1117/12.2536683
  3. Finch, G. Ingle. “The Beilby Layer on Non-Metals.” Nature, vol. 138, no. 3502, 1936, pp. 1010–1010., doi:10.1038/1381010a0.
  4. Jayson Nelson, Shawn Iles, "Creating sub angstrom surfaces on planar and spherical substrates," Proc. SPIE 11175, Optifab 2019, 1117505 (15 November 2019); https://doi.org/10.1117/12.2536689
  5. Peter D. Groot, “The Meaning and Measure of Vertical Resolution in Optical Surface Topography Measurement.” Applied Sciences, 7(1), 54 (5 January 2017) doi:10.3390/app7010054

FAQ (よくある質問)

FAQ  エドモンド・オプティクスは合成石英以外の材料をスーパーポリッシュできる?
はい、サブオングストロームのRMS面粗さは、N-BK7、シリコン、およびフッ化カルシウムでも実証されました。
FAQ  原子間力顕微鏡 (AFM) が最も高い空間周波数を測定できるのに、サブオングストロームの面粗さ計測に白色光干渉法 (WLI) を用いるのはなぜ?

AFMは、より高い空間周波数を測定できるため、より細部まで分析できますが、実視野が小さく、環境要因への感度が高いため、製造環境での計測にはより不適切になるためです。WLIは、AFMのこうした弱点を回避しながら、サブオングストロームのRMS面粗さを成功裏に測定することを証明しました。2

FAQ  白色光干渉法の空間周波数の上限が約1,800サイクル/mmであるなら、この周波数が空間領域で556nmに相当する場合、これでサブオングストロームのRMS面粗さの何を測定している?

556nmの領域は、測定器が妥当な厳格性で撮像することができる特定のディテールサイズに対応し、測定器の横方向の計測値になります。垂直解像度の観点からも議論されるRMS限界は、主に測定器のノイズレベルの関数になり、ディテールサイズに依存しません。5

FAQ  スーパーポリッシュオプティクスをより理解するにはどうしたらいい?

SPIE会議の議事録 (英文資料) でスーパーポリッシュ面の製造および測定 に関する資料を読むことで、スーパーポリッシュオプティクスに関して理解をさらに深めることができます。

参考資料

アプリケーションノート

理論的説明や公式、図解などを網羅した技術情報やアプリケーション実例です。

表面下損傷
読む  

レーザーオプティクスに対する測量
読む  

動画

簡単なヒントからアプリケーションベースのデモに至るまで、企業や製品に関する動画情報です。

Introduction to Laser Optics Lab 
鑑賞する  

Metrology at Edmund Optics: Measuring as a Key Component of Manufacturing 
鑑賞する  

投稿記事

エドモンド・オプティクスが投稿、もしくはEOのエンジニアチームやキーマンが寄稿した業界専門誌の記事をご覧いただけます。

"Creating sub angstrom surfaces on planar and spherical substrates" by Jayson Nelson and Shawn Iles - SPIE
読む  

"Sub-angstrom surface roughness metrology with the white light interferometer" by Shawn Iles and Jayson Nelson - SPIE
読む  

"Fabrication of ultralow-roughness surfaces: The Beilby layer" by Jayson Nelson and Shawn Iles - Laser Focus World
読む  

"White-light interferometry resolves sub-Angstrom surface roughness" by Shawn Iles and Jayson Nelson - Laser Focus World
読む  

このコンテンツはお役に立ちましたか?
 
販売や技術サポート
 
もしくは 現地オフィス一覧をご覧ください
簡単便利な
クイック見積りツール
商品コードを入力して開始しましょう